[1] "state,abb,region,population,total" "Alabama,AL,South,4779736,135"     
[3] "Alaska,AK,West,710231,19"         
MATH/COSC 3570 Introduction to Data Science
| Function | Format | Typical suffix | 
|---|---|---|
read_table() | 
white space separated values | txt | 
read_csv() | 
comma separated values | csv | 
read_csv2() | 
semicolon separated values | csv | 
read_tsv() | 
tab delimited separated values | tsv | 
read_fwf() | 
fixed width files | txt | 
read_delim() | 
general text file format, must define delimiter | txt | 
read_csv() prints out a column specification giving us delimiter, name and type of each column.
murders_csv <- read_csv(file = "./data/murders.csv")
# ── Column specification ─────────────
# Delimiter: ","
# chr (3): state, abb, region
# dbl (2): population, total
head(murders_csv)# A tibble: 6 × 5
  state      abb   region population total
  <chr>      <chr> <chr>       <dbl> <dbl>
1 Alabama    AL    South     4779736   135
2 Alaska     AK    West       710231    19
3 Arizona    AZ    West      6392017   232
4 Arkansas   AR    South     2915918    93
5 California CA    West     37253956  1257
6 Colorado   CO    West      5029196    65
Which type is the column vector x? Why?

read_csv() only recognizes ” “ and NA as a missing value.na.| type function | data type | 
|---|---|
col_character() | 
character | 
col_date() | 
date | 
col_datetime() | 
POSIXct (date-time) | 
col_double() | 
double (numeric) | 
col_factor() | 
factor | 
col_guess() | 
let readr guess (default) | 
col_integer() | 
integer | 
col_logical() | 
logical | 
col_number() | 
numbers mixed with non-number characters | 
col_numeric() | 
double or integer | 
col_skip() | 
do not read | 
col_time() | 
time | 
# A tibble: 3 × 2
      x y    
  <dbl> <chr>
1     1 a    
2     2 b    
3     3 c    
read_rds() and write_rds()
.Rds in the R binary file format. 1
10-Import Data
tidyverse package.In lab.qmd ## Lab 10 section,        
read_csv() and call them ssa_male and ssa_female, respectively.Age (x-axis) vs. LifeExp (y-axis) for Female. The type should be “line”, and the line color is red. Add x-label, y-label and title to your plot.lines() to add a line of Age (x-axis) vs. LifeExp (y-axis) for Male to the plot. The color is blue.| Function | Format | Typical suffix | 
|---|---|---|
read_excel() | 
auto detect the format | xls, xlsx | 
read_xls() | 
original format | xls | 
read_xlsx() | 
new format | xlsx | 
excel_sheets() gives us the names of all the sheets in an Excel file.sheet argument to read sheets other than the first.[1] "Sheet1" "Sheet2" "Sheet3"
# A tibble: 19 × 6
  Scores `131024` `113804` `104201` `103886` `91756`
   <dbl>    <dbl>    <dbl>    <dbl>    <dbl>   <dbl>
1     10       NA       64        8      227      34
2     11        6       83       11      217      58
3     12       23       87        7       28      67
4     13        1       54       16      230      42
5     14        3      145       18      303      57
6     15       58      151       50      192      98
7     16        1      129       13      156     125
8     17       73      214       59      163     115
# ℹ 11 more rows
pd.read_csv
pd.read_excel
pd.DataFrame.to_csv
pd.read_csvpd.DataFrame.to_csvw = {"x":[1, 2, 3], 
     "y":['a', 'b','c']}
wdf = pd.DataFrame(w)
wdf.to_csv("./data/wdf.csv")
mydf = pd.read_csv('./data/wdf.csv')
mydf.head()   Unnamed: 0  x  y
0           0  1  a
1           1  2  b
2           2  3  c